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NUMERICAL SIMULATION OF AN ISOLATED VORTEX
AND SHEAR FLOW INTERACTION

I. V. ANTROPOV

Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow, Russia

SUMMARY

A numerical solution for the Navier-Stokes equations in the unbounded region is considered for the
interaction of an isolated vortex and shear flow. A Chebyshev collocation method in space and finite-
difference method for temporal discretization are used. The results of the numerical experiments for the
interaction are discussed. It is shown that shear flow can both increase and decrease the vortex dissipation
rate.
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INTRODUCTION

Vortex evolution processes are inherent in many naturally occurring phenomena, both large scale
(atmospheric cyclones) and small scale (the turbulization of a shear flow). It has long been
observed that the free shear layer contains large-scale spanwise vortices at a wide variety of
Reynolds numbers. There have been numerous studies of the formation, stability, evolution and
interactions of these vortices. Waugh and Dritshel! investigated the stability of filamentary
vorticity for a class of two-dimensional, inviscid, non-divergent models. In all models, a strip of
potential vorticity is unstable in the absence of background shear flow. Imposing a shear flow that
reverses the total shear across the strip, however, brings about stability. On the other hand,
although co-operative shear can suppress linear instability, it cannot prevent non-linear disrup-
tion. Metcalfe et al.? investigated three-dimensional stability of two-dimensional vortical states
by direct numerical solution of Navier-Stokes equations. Three-dimensional computations with
random initial conditions were performed by Sandham and Reynolds,® who investigated the
influence of compressibility on the development of large-scale structures. Both Metcalfe et al.”
and Sandham and Reynolds® assumed periodicity of the flow in two directions. A Fourier
collocation method for these directions was used. For the third direction, Chebyshev collocation
method was used by Metcalfe et al.> and finite-difference method by Sandham and Reynolds.?
Marcus* considered two-dimensional, inviscid, constant-density, quasi-geostrophic flow between
rapidly rotating annuli. He showed that the dynamics depends crucially on the exchange between
the self-energy of the flow and the interaction energy of the zonal flow with the vortices, The
Fourier—Chebyshev collocation method was used for numerical computations. Experimental
investigations of a plane shear layer and the vortex dynamics in it have been made by Lasheras et
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al.,’ Lasheras and Cho,® Bernal and Roshko,” Nygaard and Glezer® and Panides and Chevray.®

In this work we consider two-dimensional, viscid, constant-density, incompressible flow in
Cartesian co-ordinates. The paper seeks to describe an isolated vortex and shear flow interaction
process using Chebyshev collocation method for space co-ordinates and high-accuracy finite-
difference scheme for time discretization. The outline of the paper is as follows. First, the
numerical procedure is considered. Next, the isolated vortex is simulated using the numerical
procedure. Here the objective is twofold: to compare numerical simulation results with analytical
solution for isolated vortex, and to choose proper time step and iterative parameters. After that,
the results of the simulation of the isolated vortex and shear flow interaction are shown. Finally,
the possibilities of an algorithm generalization for inhomogeneous and three-dimensional flows
are briefly discussed.

NUMERICAL SOLUTION PROCEDURE

The collocation {pseudo-spectral) method is one of the spectral methods. It has the advantage of
a high degree of accuracy of the spectral methods, as well as the possibility of dealing with
non-linear terms of differential equations in physical space. For a complete discussion of spectral
methods application to partial differential equations numerical integration, the reader is referred
to Gottlieb and Orszag,'° Canuto et al.'! and references therein.

The computer procedure used for numerical simulations considered in this article is developed
as follows: Denote velocity as V'=(u, v), time as t, space co-ordinates as x and y, pressure as P,
Reynolds number as Re. All variables here and below are assumed to be dimensionless. The
Navier-Stokes equations in Cartesian co-ordinates are

ov

1
E+V (VV)=R—eAV——VP 1)

and the incompressible fluid continuity equation is

V-¥=0. @
Let us transform the (x, y) plane to the square [—1, 1] x [—1, 1]: =tanh (x/M), y =tanh(y/M)
and M =constant. For the numerical simulation results shown herein, we set M =5-07.
Approximation in space

Derivatives of a function f(x, y, t) with respect to x are

if_sa_f 6_2j"__2)fsg+szﬁzf
dx ~ox 0x: M ox ox?

1 I, 1+x
S=—sech?{-Iln—= ).
sec ( 7 In 1—)2)
Let us expand f(X, y, t) with fixed y and ¢ in terms of Chebyshev polynomials 7,(X):

3

f(®)= Y AT(%).
k=0
The expansion coefficients are given by

" 2 1
fF,Tf SR -7 d%, =2, ce=1(k>0) @
€ -1
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Let us consider the collocation points X;=cos(nj/N), 0<j<N. Denote f(X;) as f;. The integrals
(4) can be substituted with corresponding sums

fi= Z f, =~ 0<k<N,
NCk j= (5)
_ )2 ]=0, N,
“7Y1, 1gjsN-1.
The function values at the collocation points can be written as
N o k
=X k COSEJN—, 0<j<N. ©
k

It is shown in Gottlieb and Orszag!® that, if f(X) is piecewise continuous and if f(x) is of bounded
total variation for —1<x<1, then, as N goes to oo, the expansion (6) converges to
[ f(X_)+f(x4)]1/2. Also, if f P(x) is continuous for all | x|< 1 for p=0, 1,..., N—1, and f M (X)
is integrable, then the error in the Chebyshev series goes to zero more rapidly than any finite
power of 1/N as N goes to oo. It follows from the Chebyshev polynomial property that
Ti(cos 8)=cos k6.

If N =2"3" (i, n—integer numbers), the sums (5) and (6) can be calculated using the fast Fourier
transform. Fast-Fourier-transform-based algorithms provide an efficient way for transition from
physical space {f;} to transform space { f} and back to physical space again. Let us expand
X derivative of f(x) in terms of Chebyshev polynomials,

%f‘(ih f FOT ().

k=0

The coefficients f{* can be quickly calculated in { ﬁ} using the recurrence relation,
e f =42k 4 D) ferr, k20, (7

To calculate advection terms of the Navier—Stokes equations, it is necessary to multiply two
functions. Preferably, it should be done in physical space {f;}, because the operation of
multiplication in { fk} is equivalent to sums multiplication. As a rule, initial velocity and pressure
fields are defined in physical space. In most cases, boundary conditions are also easier to impose
for a function in { f;}. These are the reasons to integrate equations (1) and (2) in physical rather
than in transform space and to use the transform space only for the evaluation of derivatives.

In the numerical procedure presented herein, the derivatives with respect to the x co-ordinate
at collocation points are calculated using expressions (3), (5)—(7). The y-derivatives are calculated
in similar fashion. For the results of numerical simulations shown below, N is equal to 32; 33
terms in a sum are retained and a 33 x 33 grid of collocation points is used.

Approximation in time

The integration of equations (1) and (2) for time is performed as follows. Let F{(t,) denote
a velocity field at time step n. At the first half of the time step, the intermediate velocity field ¥ * is
determined as a solution of the equations

oV 1
o —+V(VV)= ReAV.
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The finite-difference algorithm is used for time approximation. It combines two schemes. The
explicit third-order compact Runge—Kutta scheme suggested by Williamson'? is used for advec-
tion terms A(V)=—V-(VV); the implicit second-order Crank—Nicolson scheme is used for
diffusion terms D( V)= AV/Re. All derivatives with respect to space variables x and yin 4(})and
D(V') are calculated using the collocation method. The intermediate velocity field ¥ * is deter-
mined as follows (t=At/2, half of the time step):

V0= V(tn)9
Hi=1tA(Vs),

Vi=Vo+3H +41[D(V,)+D(1)],
H,=tA(V))—-3 H,,
Va=Vi+18 Ha+ 55t [D(V1)+D(1)], (8)
Hy=1A(V>)— 138 Ha,
Va=Va+15 Hy+§ 1[D(V2)+D(V3)],
V*=1j;.
Next, the pressure field P(t, ) is calculated as a solution of the Poisson equation,
AP=VV*/t.

At the second half of the time step, the velocity field is corrected in order to insure mass
conservation for V(t,+):

V(tas1)=V*—1tVP(ty+1).

The numerical procedure described above was used successfully by Street and Hussaini'? for
numerical simulation of Taylor—Couette flow in cylindrical co-ordinates. Two Helmholtz equa-
tions are solved for V;=(u;, v;), i=1, 2, 3. Thus, the algorithm realization requires solution of six
Helmholtz equations for the intermediate velocity field evaluation and one Poisson equation for
pressure at each time step. To solve these equations, the minimal residual method is used.

Let us write Lf="b for each of the Helmholtz and Poisson equations, where f'is the function to
be found, and b is the right-hand side of the equation. With R, to denote the residual at the
iteration k, we have Ro=b—Lf,, R;.1=R;—ua; LR,; the solution approximation at k+ 1 iter-
ation is defined as f, + | =f; + o, R, The iteration parameter o, is chosen in order to minimize the
squared norm of R, in L, space:

(Rk+1, R+ 1)=(Ry, Ri)+ 2 (LRy, LRy) =20, (Ry, LRy).

Equating the derivative of this expression with respect to «, to zero, the optimal «, value can be
derived: o =(Ry, LR)/(LR,, LR;). Obviously, with this choice of a;, the squared residual norm
is decreasing at each iteration:

(Rk+ 1s Rk+ 1)=(Rk, Rk)’_(Rka LRk)2/(LRk; LRk)-

When it becomes less than the predetermined parameter e, the iterative cycle is terminated.
Unfortunately, the convergence rate of this method deteriorates abruptly when it is applied to the
Neumann problem. The convergence rate deterioration for minimal residual and orthogonal
residual methods has also been observed by Street and Hussaini.'® In this work we consider
Dirichlet boundary conditions only.

The above numerical procedure can be used for simulations of viscous incompressible fluid
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flows. In this work it is implemented to simulate an interaction of an isolated vortex and a shear
flow in an unbounded region.

ISOLATED VORTEX SIMULATIONS

Let us consider the situation when, at the moment ¢ =0, the infinite length vorticity filament of
intensity T is placed into an unbounded three-dimensional region. It is called an isolated vortex.
We denote the radial distance on the (x, y)} plane perpendicular to the vortex axis as r;
r=(x2+yp?)"2 It is shown in Loytsiansky'* that the vorticity for ¢ >0 is distributed as follows:

Rell Rer?
0= e (-5 ©)

With U(x, y, t)=(I'/2rr) [1 —exp (— Re r? /4t)], the velocity field corresponding to the vorticity
field is

u=Uy/r, v=—Ux/r. (10)

The time step may be denoted as At, the maximal velocity as V,,,, and the minimal distance
between the collocation points as Ax,;,. The finite-difference scheme used for integration for time
is stable for a Courant number, C= At V_,,/Ax ... up to one. However, for most time-dependent
problems, the error value due to time discretization is more important for the choice of the time
step At than the scheme stability. The time step in Street and Hussaini'*® was chosen so that the
Courant number was about 0-1-0-2.

To choose the time-step value and values of squared residual norm ¢, and ¢, used for
termination of iterations for solving of Helmholtz and Poisson equations, a numerical simulation
of isolated vortex dissipation was carried out. Several runs with I'=10, Re=10 and 2<t<12
were performed. The initial velocity field was calculated using equation (10) for t=2. The plot of
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Figure 1. The distribution of the velocity y-component v and collocation points on the x-axis: (1) the distribution of

isolated vortex velocity y-component v(x, 0) at t=2; (2) collocation points distribution (M =507, N =32); (3) shear flow

velocity y-component distribution v(x) in the case when the sense of shear is coincident with the sense of the vortex

rotation; (4) shear flow velocity y-component distribution v(x) in the case when the sense of shear is opposite to the sense
of the vortex rotation
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v as a function of x for y=0 and t=2 and the distribution of collocation points along the x-axis
are shown in Figure 1. The boundary collocation points (first and 33rd) are located at +oo. The
values ¢, £, and At had been decreased with each subsequent run until velocity and pressure fields
ceased to differ from the fields at the same time moments for the previous run. For the numerical
simulations discussed below, the time step At=5x10"3 has been chosen (C=65x1073),
although the numerical scheme remains stable for a much larger time step. In fact, with At chosen
so small, the error because of time discretization can be neglected, and we have to deal with the
error in advection and diffusion terms only. With these ¢, ¢, values and At, only 1-2 iterations for
every variable at each time step are sufficient. Several time steps in the beginning are exceptions,
A maximum number of iterations (600-700) is necessary for solving the Poisson equation for
pressure at the first time step, because P(x, y)=0 is used as an initial approximation. In other
cases, either the field at the previous time step or intermediate velocity fields (¥, for the evaluation
of V,, V, for the evaluation of V;; see equations (8)) were used.

To compare numerical simulation results with an analytical solution vorticity field,
Q(x, y)=(du/dy)—(dv/0x) was calculated every 10th time step. The x and y derivatives were
estimated using equations (3), (5)-(7). The vorticity plots for — 1528 <x, y<1528,t=2and t=12
are shown in Figure 2. The vorticity field for the initial approximation is shown in Figure 2(a). We
denote the maximal vorticity value as Q,.,; Q.. =Q(0,0)=401. The maximum difference
between the analytical solution (9) and the vorticity approximation with space derivatives
estimated using the collocation method is equal to 34x 1072 (at x=1, y=1 point). When
equations (1) and (2) are integrated with the initial approximation and Dirichlet boundary
conditions (#|,=, =0, v{,=,=0, P|,o=0), the difference between numerical and analytical
solutions grows initially and then begins to decrease with vortex dissipation. The maximum
difference for vorticity approaches 0-71 at t=4-90, x=0, y=0, which is 18 per cent of Q,,,. The
vorticity field at t=12 (after 2000 time steps) is shown in Figure 2(b). The maximum difference
between numerical and analytical solutions is equal to 0-52 (13 per cent of Q,,,,) at the origin
(x=0, y=0).

Thus, analytical and numerical solutions at the origin differ noticeably. The usual spectral
accuracy cannot be achieved in this example because the numerically simulated P(x, y) is different
from the pressure field corresponding to (9). The numerical solution is the sum of bounded
variation functions; it has a finite value for any x and y. On the other hand, for analytical solution
lim, ..o (P)= — oo (with the boundary condition P|,_ ,=0). It is for this reason that the analyti-
cally calculated vortex dissipates faster than the numerically simulated one. The difference
between numerical and analytical solutions decreases slightly with collocation points moving
closer to the origin (M decreasing) and increases as they move apart (M increasing). The attempt
to improve accuracy by moving collocation points closer to the origin entails the development of
small-scale oscillations in the simulations of isolated vortex and shear flow interaction considered
below. Therefore, the choice of M equal to 5-07 is, in a sense, a compromise to achieve satisfactory
grid resolution for the whole of the region of interest. Since the behaviour of the numerically
simulated vortex and the analytically calculated one is qualitatively the same, it is still possible to
apply the above algorithm to the simulation of interaction between an isolated vortex and a shear
flow. The aim of the discussion to follow is to describe the main features of this interaction.

INTERACTION SIMULATIONS
Let us consider a shear flow with initial velocity field

u(x, y)=0, v(x, y)= +tanh(x). (11
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Figure 2. The distributions of the vorticity Q(x, y).

(a) t=2, (b) t =12 isolated vortex simulation.
(c) t=2, (d) t =12 isolated vortex and shear flow interaction; the sense of shear is coincident with the sense of the vortex

rotation.
(e} t =2, (f)t =12 isolated vortex and shear flow interaction; the sense of shear is opposite to the sense of the vortex rotation
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The sign of the velocity component v corresponds to shear sense (direction). Two alternate
interaction variants corresponding to different shear directions will be discussed below. The shear
flow vorticity field is

Q(x, y)= +sech? x. (12)

We use, for initial approximation, the superposition of the velocity fields calculated with
equation (10) for £ =2 and equation (11). The initial shear flow velocity distributions are shown in
Figure 1, where curve 3 corresponds to the case when negative signs in equations (11) and (12) are
used. Assuming a clockwise rotating vortex, the sense of rotation of the vortex is coincident with
the sense of shear. The curve 4 corresponds to the case when positive signs in (11) and (12) are
used; the sense of the vortex rotation is opposite to the sense of shear. The initial vorticity fields
are the superposition of the fields calculated by (9) and (12) and are shown in the Figures 2(c) and
2(e). The vorticity fields for these plots were approximated using the initial velocity fields; the x-
and y- derivatives were calculated using the collocation method. The differences between these
vorticity distributions and those calculated with (9) and (12) ones are maximal at the points with
x=0, y= + 1528 co-ordinates; their values are insignificant (about 10~2).

Let us consider the boundary conditions imposed at infinity in more detail. With Re <co, the
velocity field (11) is not the solution of equations (1) and (2) for any t. In other words, the usage of
the distribution (11} as an initial approximation gives rise to a time-dependent flow, which tends
to change the v profile to a linear one. However, the shear flow simulation performed for Re= 10,
with velocity distribution (11) and P=0 used as boundary conditions at infinity has shown that
the velocity field changes for 0<t<10 are insignificant. Therefore, viscosity effects can be
neglected for pure shear flow for this time interval, and one can regard this flow as time-
independent. Thus, it is possible to use the velocity distribution (11) and P=0 as boundary
conditions at infinity for the isolated vortex and shear flow interaction simulations.

The vorticity fields for 1= 12 are shown in Figures 2(d) and 2(f). Figure 2(d) corresponds to the
case when the sense of rotation of the vortex is coincident with the sense of shear, while
Figure 2(f) corresponds to the case when they are opposite to each other. The contour lines
corresponding to the Figures 2(d) and 2(f) vorticity distributions are shown in Figure 3. We
compare Figure 2(d) with 2(f) and Figure 3(a) with 3(b). As can be seen, shear flow accelerates
dissipation of the vortex in the first case, and slows it in the second case. To prove this conclusion,
we plot the x-component of the velocity u at the two points on the y-axis as a function of time.
This velocity component can be called the tangential velocity. The functions u(t) for the points
x=0, y=1 and x=0, y=2 are shown in Figure 4. The points (0, 1) and (0, 2) are marked in
Figures 3(a} and 3(b). Three curves are plotted for each point: the curve for vortex flow in the
absence of shear and the curves for two flows with alternate shear senses. The x-components of
the velocities at the considered points are the same initially (for ¢t = 2), because for the pure shear
flow, u=0. For t>2, tangential velocities for these three cases at the two points begin to differ.

When the sense of shear coincides with the sense of rotation (curves 1 in Figures 4(a) and 4(b),
the tangential velocity at the end of the run exceeds the tangential velocity for the simulation of
isolated vortex in absence of shear flow (curves 2 in Figures 4(a) and 4(b)). Note that tangential
velocity at the point (0, 2} grows in this case in the beginning of the run (curve 1 in Figure 4(b)).
When the sense of shear is opposite to the sense of vortex rotation (curves 3 in Figures 4(a) and
4(b)), the tangential velocity at the considered points is lower than the tangential velocity for an
isolated vortex in the absence of shear and decreases monotonically. Thus, shear flow can both
increase and decrease the vortex dissipation rate. Similar results are reported by Marcus* for
inviscid fluid beween rotating annuli. He points out that if the shear and the vortex strength are of
the same order and opposite sign, the vortex is pulled into a thin spiral, fragments and is
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Figure 3. The vorticity Q(x, y) contour lines at t=12: (a) the sense of shear is coincident with the sense of the vortex
rotation; (b} the sense of shear is opposite to the sense of the vortex rotation
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destroyed. If the signs are the same, the vortex redistributes its vorticity, and its shape is
determined by the ratio of its vorticity to the shear of the surrounding zonal flow.

We next focus our attention on the sense of the Reynolds number introduced above. Normally,
Reynolds number for a shear flow is based on the velocity difference Av=v; —v; and on the shear
flow thickness. However, it is hard to define the shear flow thickness distinctly. Bernal and
Roshko” determined it as a visual thickness of a shear layer for a gas facility and as a vorticity
thickness for a water facility used in their experiments. The Reynolds numbers ranged from 9400
to 13300 for the gas facility, and from 1900 to 6500 for the water facility. Lasheras et al.’
estimated local Reynolds numbers based on overall momentum thickness of a shear layer. The
Reynolds numbers in their water facility experiments varied from 36 near the trailing edge of the
splitter plate to 270 at 25 cm downstream. Nygaard and Glezer® also measured momentum
thickness of a shear layer. Momentum-thickness-based local Reynolds numbers for their water
facility varied from 216 to 1450.

Momentum thickness of a shear layer is

1 +w
0=W j_w {v{x)—v,] [vy —v(x)] dx.
For the shear flow considered herein, v(x)=tanh(x), v; =1, v,= —1 and the momentum thick-

ness 0=0.5. The momentum-thickness-based Reynolds number Re=10. The shear layer thick-
ness can be defined as a vorticity thickness

ov
o=Av
L/max I

In this case, the vorticity-thickness-based Reynolds number Re,=40. Although the numerical
simulation Reynolds numbers Re and Re, are considerably lower than the local Reynolds
numbers for the experimental works, vorticity distribution for the case when the sense of shear
coincides with the sense of vortex rotation is similar to side-view visualization photographs of
plane shear layers for water facility experiments shown in References 5-8.

CONCLUSIONS

In this paper, we consider a Chebyshev-collocation-based method for unbounded flows. The
main features of isolated vortex and shear flow interactions are investigated using this method.
The numerical simulation results are similar to those obtained by Marcus* for a vortex in
a shearing zonal flow. It is worth mentioning that placing of the vortex into higher-strength shear
flow gives rise to the propagation of the disturbance up and down in the y direction and to the
flow turbulization. Therefore, the results of this paper are applicable to moderate-strength shear
flows only.

To conclude the article, we discuss the possibilities of algorithm generalization. For heat
convection flow simulations, equations (1) and (2) should be slightly changed and equations for
temperature and density should be considered. If boundary conditions at infinity are defined for
all variables, these changes would not cause much difficulty. The numerical procedure described
above can be used also for a three-dimensional problem solution. In this case, nine Helmholtz
equations should be solved at the first half of time step. The computer code used for the numerical
simulations presented in this article is written for three-dimensional case. It is adapted for
two-dimensional problem solution with the exclusion of some of the program modules. However,
to obtain adequate results in reasonable time for a three-dimensional problem, one would have to
use a more powerful computer than the MicroVAX-II computer used for the simulations
presented above.
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