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NUMERICAL SIMULATION OF AN ISOLATED VORTEX 
AND SHEAR FLOW INTERACTION 

1. V. ANTROPOV 
Vernudsky Insiiiute of Geochemistry and Analytical Chemistry, Moscow, Russia 

SUMMARY 

A numerical solution for the Navier-Stokes equations in the unbounded region is considered for the 
interaction of an isolated vortex and shear flow. A Chebyshev collocation method in space and finite- 
difference method for temporal discretization are used. The results of the numerical experiments for the 
interaction are discussed. It is shown that shear flow can both increase and decrease the vortex dissipation 
rate. 
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INTRODUCTION 

Vortex evolution processes are inherent in many naturally occurring phenomena, both large scale 
(atmospheric cyclones) and sniall scale (the turbulization of a shear flow). It has long been 
observed that the free shear layer contains large-scale spanwise vortices at a wide variety of 
Reynolds numbers. There have been numerous studies of the formation, stability, evolution and 
interactions of these vortices. Waugh and Dritshel’ investigated the stability of filamentary 
vorticity for a class of two-dimensional, inviscid, non-divergent models. In all models, a strip of 
potential vorticity is unstable in the absence of background shear flow. Imposing a shear flow that 
reverses the total shear across the strip, however, brings about stability. On the other hand, 
although co-operative shear can suppress linear instability, it cannot prevent non-linear disrup- 
tion. Metcalfe et a1.’ investigated three-dimensional stability of two-dimensional vortical states 
by direct numerical solution of Navier-Stokes equations. Three-dimensional computations with 
random initial conditions were performed by Sandham and R e y n ~ l d s , ~  who investigated the 
influence of compressibility on the development of large-scale structures. Both Metcalfe et a/.’ 
and Sandham and Reynolds3 assumed periodicity of the flow in two directions. A Fourier 
collocation method for these directions was used. For the third direction, Chebyshev collocation 
method was used by Metcalfe et LIZ.’ and finite-difference method by Sandham and Reynolds3 
Marcus4 considered two-dimensional, inviscid, constant-density, quasi-geostrophic flow between 
rapidly rotating annuli. He showed that the dynamics depends crucially on the exchange between 
the self-energy of the flow and the interaction energy of the zonal flow with the vortices. The 
Fourier-Chebyshev collocation method was used for numerical computations. Experimental 
investigations of a plane shear layer and the vortex dynamics in it have been made by Lasheras et 
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al.,5 Lasheras and Cho,6 Bernal and Roshko,' Nygaard and Glezer' and Panides and Chevray.' 
In this work we consider two-dimensional, viscid, constant-density, incompressible flow in 

Cartesian co-ordinates. The paper seeks to describe an isolated vortex and shear flow interaction 
process using Chebyshev collocation method for space co-ordinates and high-accuracy finite- 
difference scheme for time discretization. The outline of the paper is as follows. First, the 
numerical procedure is considered. Next, the isolated vortex is simulated using the numerical 
procedure. Here the objective is twofold to compare numerical simulation results with analytical 
solution for isolated vortex, and to choose proper time step and iterative parameters. After that, 
the results of the simulation of the isolated vortex and shear flow interaction are shown. Finally, 
the possibilities of an algorithm generalization for inhomogeneous and three-dimensional flows 
are briefly discussed. 

NUMERICAL SOLUTION PROCEDURE 

The collocation (pseudo-spectral) method is one of the spectral methods. It has the advantage of 
a high degree of accuracy of the spectral methods, as well as the possibility of dealing with 
non-linear terms of differential equations in physical space. For a complete discussion of spectral 
methods application to partial differential equations numerical integration, the reader is referred 
to Gottlieb and Orszag," Canuto et aL1' and references therein. 

The computer procedure used for numerical simulations considered in this article is developed 
as follows: Denote velocity as V=(u,  u), time as t ,  space co-ordinates as x and y, pressure as P, 
Reynolds number as Re. All variables here and below are assumed to be dimensionless. The 
Navier-Stokes equations in Cartesian co-ordinates are 

- + V * ( V V ) = - A V - V P  av 1 
at Re 

and the incompressible fluid continuity equation is 

v .  v=o. 
Let us transform the (x, y )  plane to the square [ - 1 , 1 ]  x [ - 1,1] : X = tanh (x/M), j = tanh( y/M) 
and M =constant. For the numerical simulation results shown herein, we set M = 5.07. 

(2) 

Approximation in space 

Derivatives of a functionf(x, y ,  t )  with respect to x are 

Let us expandf(2, j ,  t )  with fixed j and t in terms of Chebyshev polynomials Tk(X): 

The expansion coefficients are given by - I-l L -  

rick - 1  
fk = - J f ( X) ( X) (1 - x ') - 1'2 d2  , co=2,ck=1 ( k > 0 ) .  (4) 
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Let us consider the collocation points Xj=cos(nj/N), O l j l  N .  Denotef(xj) a sh .  The integrals 
(4) can be substituted with corresponding sums 

2, j = O ,  N ,  
1 ,  l< j<N-1 .  

The function values at the collocation points can be written as 

.. njk fi= 1 f k  COS--, N O < j l N .  
k = O  

It is shown in Gottlieb and Orszag" that, iff(,?) is piecewise continuous and iff(.) is of bounded 
total variation for - 1 ~ 2 5 1 ,  then, as N goes to 00, the expansion (6) converges to 
[f(x-)+f(2+)]/2. Also, iff(P)(i) is continuous for all Ix  I <  1 for p = O ,  1,. . . , N -  1, andf("(2) 
is integrable, then the error in the Chebyshev series goes to zero more rapidly than any finite 
power of 1/N as N goes to a. It follows from the Chebyshev polynomial property that 

If N = 2"3" (m, n--integer numbers), the sums (5) and (6) can be calculated using the fast Fourier 
transform. Fast-Fourier-transform-based algorithms provide an efficient way for transition from 
physical space {fi) to transform space {f?k} and back to physical space again. Let us expand 
X derivative o f f ( i )  in terms of Chebyshev polynomials, 

Tk(C0s 6 )  = COS kO. 

The coefficients can be quickly calculated in { A )  using the recurrence relation, 

(7) ckjp - - fk+2+2(k+1) .6+1 ,  ^(1) k 2 0 .  

To calculate advection terms of the Navier-Stokes equations, it is necessary to multiply two 
functions. Preferably, it should be done in physical space {fi}, because the operation of 
multiplication in { A }  is equivalent to sums multiplication. As a rule, initial velocity and pressure 
fields are defined in physical space. In most cases, boundary conditions are also easier to impose 
for a function in { fj} . These are the reasons to integrate equations (1) and (2) in physical rather 
than in transform space and to use the transform space only for the evaluation of derivatives. 

In the numerical procedure presented herein, the derivatives with respect to the x co-ordinate 
at collocation points are calculated using expressions (3), (5)-(7). The y-derivatives are calculated 
in similar fashion. For the results of numerical simulations shown below, N is equal to 32; 33 
terms in a sum are retained and a 33 x 33 grid of collocation points is used. 

Approximation in time 

The integration of equations (1) and (2) for time is performed as follows. Let V(t.) denote 
a velocity field at time step n. At the first half of the time step, the intermediate velocity field V *  is 
determined as a solution of the equations 

1 
V + V * ( V V ) = -  at Re * K  
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The finite-difference algorithm is used for time approximation. It combines two schemes. The 
explicit third-order compact Runge-Kutta scheme suggested by Williamson12 is used for advec- 
tion terms A (  V ) =  - V .( V V ) ;  the implicit second-order Crank-Nicolson scheme is used for 
diffusion terms D( V )  = A V/Re. All derivatives with respect to space variables x and y in A (  V )  and 
D( Y )  are calculated using the collocation method. The intermediate velocity field V* is deter- 
mined as follows ( t=At/2,  half of the time step): 

VO= v(tn), 
H,=zA(Vo),  

AP = V V*/t. 

At the second half of the time step, the velocity field is corrected in order to insure mass 
conservation for V(  t,+ ): 

V (  t, + 1 )  = V* - 2VP(tn + 1 ) .  

The numerical procedure described above was used successfully by Street and Hussainii3 for 
numerical simulation of Taylor-Couette flow in cylindrical co-ordinates. Two Helmholtz equa- 
tions are solved for x = ( u i ,  ui), i =  l ,  2, 3. Thus, the algorithm realization requires solution of six 
Helmholtz equations for the intermediate velocity field evaluation and one Poisson equation for 
pressure at each time step. To solve these equations, the minimal residual method is used. 

Let us write Lf= b for each of the Helmholtz and Poisson equations, wherefis the function to 
be found, and h is the right-hand side of the equation. With Rk to denote the residual at the 
iteration k,  we have Ro = h - Lfo, Rk+  = R k - a k  LRk;  the solution approximation at k + 1 iter- 
ation is defined as&+ =fk + u k R k .  The iteration parameter ak is chosen in order to minimize the 
squared norm of R k +  in L2 space: 

( R k  + 1 , Rk + 1 = (Rk, Rk) + xk2 (LRk, LRk) - 2ak( Rk, LRk) ,  

Equating the derivative of this expression with respect to to zero, the optimal c(k value can be 
derived: ak = ( R k ,  L&)/(LRk, L R k ) .  Obviously, with this choice of ak, the squared residual norm 
is decreasing at each iteration: 

( R k + l ,  R k + i ) = ( R k ,  & I - ( & ,  LRk)2/ (LRk,  LRk).  
When it becomes less than the predetermined parameter E,  the iterative cycle is terminated. 
Unfortunately, the convergence rate of this method deteriorates abruptly when it is applied to the 
Neumann problem. The convergence rate deterioration for minimal residual and orthogonal 
residual methods has also been observed by Street and Hus~ain i . '~  In this work we consider 
Dirichlet boundary conditions only. 

The above numerical procedure can be used for simulations of viscous incompressible fluid 
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flows. In this work it is implemented to simulate an interaction of an isolated vortex and a shear 
flow in an unbounded region. 

ISOLATED VORTEX SIMULATIONS 

Let us consider the situation when, at the moment t=O,  the infinite length vorticity filament of 
intensity is placed into an unbounded three-dimensional region. It is called an isolated vortex. 
We denote the radial distance on the (x, y) plane perpendicular to the vortex axis as r; 
r=(x2+y2)'l2.  It is shown in Loyt~iansky'~ that the vorticity for t > O  is distributed as follows: 

(9) 

With U ( x ,  y, t)=(r/27rr) [l -exp ( - R e  r2/4t)], the velocity field corresponding to the vorticity 
field is 

u= Uylr, u= --Ux/r. (10) 
The time step may be denoted as At, the maximal velocity as V,,,, and the minimal distance 

between the collocation points as Axmin. The finite-difference scheme used for integration for time 
is stable for a Courant number, C=At Vmax/Axminr up to one. However, for most time-dependent 
problems, the error value due to time discretization is more important for the choice of the time 
step At than the scheme stability. The time step in Street and Hussainil3 was chosen so that the 
Courant number was about 0 . 1 4 2 .  

To choose the time-step value and values of squared residual norm E ,  and g p  used for 
termination of iterations for solving of Helmholtz and Poisson equations, a numerical simulation 
of isolated vortex dissipation was carried out. Several runs with r= 10, R e =  10 and 2 1 ~ 1 1 2  
were performed. The initial velocity field was calculated using equation (10) for t = 2 .  The plot of 

. 00 

Figure 1. The distribution of the velocity y-component u and collocation points on the x-axis: (1) the distribution of 
isolated vortex velocity y-component u(x ,  0) at t = 2; (2) collocation points distribution (M = 5.07, N = 32); (3) shear flow 
velocity y-component distribution u ( x )  in the case when the sense of shear is coincident with the sense of the vortex 
rotation; (4) shear flow velocity y-component distribution u ( x )  in the case when the sense of shear is opposite to the sense 

of the vortex rotation 
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u as a function of x for y = 0 and t = 2 and the distribution of collocation points along the x-axis 
are shown in Figure 1. The boundary collocation points (first and 33rd) are located at +a. The 
values E,,  &,and At had been decreased with each subsequent run until velocity and pressure fields 
ceased to differ from the fields at the same time moments for the previous run. For the numerical 
simulations discussed below, the time step A t = 5  x 
although the numerical scheme remains stable for a much larger time step. In fact, with At chosen 
so small, the error because of time discretization can be neglected, and we have to deal with the 
error in advection and diffusion terms only. With these E", c p  values and At, only 1-2 iterations for 
every variable at each time step are sufficient. Several time steps in the beginning are exceptions. 
A maximum number of iterations (600-700) is necessary for solving the Poisson equation for 
pressure at the first time step, because P(x, y) = 0 is used as an initial approximation. In other 
cases, either the field at the previous time step or intermediate velocity fields (V, for the evaluation 
of Vz, V2 for the evaluation of V,; see equations (8)) were used. 

To compare numerical simulation results with an analytical solution vorticity field, 
Q(x, y )=  (au/ay)-(au/i3x) was calculated every 10th time step. The x and y derivatives were 
estimated using equations (3), (5)-(7). The vorticity plots for - 15.28 IX, y I 15.28, t = 2 and t= 12 
are shown in Figure 2. The vorticity field for the initial approximation is shown in Figure 2(a). We 
denote the maximal vorticity value as Qmax; Q,,, = Q(0,O) = 4.01. The maximum difference 
between the analytical solution (9) and the vorticity approximation with space derivatives 
estimated using the collocation method is equal to 3.4 x (at x = 1, y = 1 point). When 
equations (1) and (2) are integrated with the initial approximation and Dirichlet boundary 
conditions (u I,.=, =0, u j r = ,  =0, PI,.=, =O), the difference between numerical and analytical 
solutions grows initially and then begins to decrease with vortex dissipation. The maximum 
difference for vorticity approaches 0.7 1 at t = 4.90, x = 0, y = 0, which is 18 per cent of amax. The 
vorticity field at t = 12 (after 2000 time steps) is shown in Figure 2(b). The maximum difference 
between numerical and analytical solutions is equal to 052  (13 per cent of SZ,,,) at the origin 

Thus, analytical and numerical solutions at the origin differ noticeably. The usual spectral 
accuracy cannot be achieved in this example because the numerically simulated P ( x ,  y )  is different 
from the pressure field corresponding to (9). The numerical solution is the sum of bounded 
variation functions; it has a finite value for any x and y. On the other hand, for analytical solution 
limr.+o ( P ) =  - co (with the boundary condition PIr= co =O). It is for this reason that the analyti- 
cally calculated vortex dissipates faster than the numerically simulated one. The difference 
between numerical and analytical solutions decreases slightly with collocation points moving 
closer to the origin ( M  decreasing) and increases as they move apart ( M  increasing). The attempt 
to improve accuracy by moving collocation points closer to the origin entails the development of 
small-scale oscillations in the simulations of isolated vortex and shear flow interaction considered 
below. Therefore, the choice of M equal to 5.07 is, in a sense, a compromise to achieve satisfactory 
grid resolution for the whole of the region of interest. Since the behaviour of the numerically 
simulated vortex and the analytically calculated one is qualitatively the same, it is still possible to 
apply the above algorithm to the simulation of interaction between an isolated vortex and a shear 
flow. The aim of the discussion to follow is to describe the main features of this interaction. 

has been chosen ( C = 6 5  x 

(x=O, y=O). 

INTERACTION SIMULATIONS 

Let us consider a shear flow with initial velocity field 

u ( x ,  y)=O, u(x, y)= &tanh(x). 
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Figure 2. The distributions of the vorticity n(x, y). 
(a) t =2, (b) t = L2 isolated vortex simulation. 
(c) t =2, (d) t = 12 isolated vortex and shear flow interaction; the sense of shear is coincident with the sense of the vortex 
rotation. 
(e) t =2, (fj t = 12 isolated vortex and shear flow interaction; the sense of shear is opposite to the sense of the vortex rotation 
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(d) 

Figure 2. (Continued) 
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(f) 

Figure 2. (Continued) 
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The sign of the velocity component u corresponds to shear sense (direction). Two alternate 
interaction variants corresponding to different shear directions will be discussed below. The shear 
flow vorticity field is 

Q(x, y)= +sech2 x. (12) 

We use, for initial approximation, the superposition of the velocity fields calculated with 
equation (10) for t =2 and equation (1 1). The initial shear flow velocity distributions are shown in 
Figure 1, where curve 3 corresponds to the case when negative signs in equations (1 1) and (12) are 
used. Assuming a clockwise rotating vortex, the sense of rotation of the vortex is coincident with 
the sense of shear. The curve 4 corresponds to the case when positive signs in (11) and (12) are 
used; the sense of the vortex rotation is opposite to the sense of shear. The initial vorticity fields 
are the superposition of the fields calculated by (9) and (12) and are shown in the Figures 2(c) and 
2(e). The vorticity fields for these plots were approximated using the initial velocity fields; the x- 
and y- derivatives were calculated using the collocation method. The differences between these 
vorticity distributions and those calculated with (9) and (12) ones are maximal at the points with 
x =0, y = 

Let us consider the boundary conditions imposed at infinity in more detail. With R e a m ,  the 
velocity field (1 1) is not the solution of equations (1) and (2) for any t. In other words, the usage of 
the distribution (1 1) as an initial approximation gives rise to a time-dependent flow, which tends 
to change the u profile to a linear one. However, the shear flow simulation performed for Re = 10, 
with velocity distribution (11) and P=O used as boundary conditions at infinity has shown that 
the velocity field changes for 0 I t  I 10 are insignificant. Therefore, viscosity effects can be 
neglected for pure shear flow for this time interval, and one can regard this flow as time- 
independent. Thus, it is possible to use the velocity distribution (11) and P = O  as boundary 
conditions at infinity for the isolated vortex and shear flow interaction simulations. 

The vorticity fields for t = 12 are shown in Figures 2(d) and 2(f). Figure 2(d) corresponds to the 
case when the sense of rotation of the vortex is coincident with the sense of shear, while 
Figure 2(f) corresponds to the case when they are opposite to each other. The contour lines 
corresponding to the Figures 2(d) and 2(f) vorticity distributions are shown in Figure 3. We 
compare Figure 2(d) with 2(f) and Figure 3(a) with 3(b). As can be seen, shear flow accelerates 
dissipation of the vortex in the first case, and slows it in the second case. To prove this conclusion, 
we plot the x-component of the velocity u at the two points on the y-axis as a function of time. 
This velocity component can be called the tangential velocity. The functions u( t )  for the points 
x =0, y = 1 and x =0, y =  2 are shown in Figure 4. The points (0, 1) and (0, 2) are marked in 
Figures 3(a) and 3(b). Three curves are plotted for each point: the curve for vortex flow in the 
absence of shear and the curves for two flows with alternate shear senses. The x-components of 
the velocities at the considered points are the same initially (for t = 2), because for the pure shear 
flow, u= 0. For t > 2, tangential velocities for these three cases at the two points begin to differ. 

When the sense of shear coincides with the sense of rotation (curves 1 in Figures 4(a) and 4(b), 
the tangential velocity at the end of the run exceeds the tangential velocity for the simulation of 
isolated vortex in absence of shear flow (curves 2 in Figures 4(a) and 4(b)). Note that tangential 
velocity at the point (0,2) grows in this case in the beginning of the run (curve 1 in Figure 4(b)). 
When the sense of shear is opposite to the sense of vortex rotation (curves 3 in Figures 4(a) and 
4(b)), the tangential velocity at the considered points is lower than the tangential velocity for an 
isolated vortex in the absence of shear and decreases monotonically. Thus, shear flow can both 
increase and decrease the vortex dissipation rate. Similar results are reported by Marcus4 for 
inviscid fluid beween rotating annuli. He points out that if the shear and the vortex strength are of 
the same order and opposite sign, the vortex is pulled into a thin spiral, fragments and is 

15.28 co-ordinates; their values are insignificant (about lo-’). 
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Figure 3. The vorticity a(x, y )  contour tines at t =  12: (a) the sense of shear is coincident with the sense of the vortex 
rotation; (b) the sense of shear is opposite to the sense of the vortex rotation 
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Figure 4. The velocity x-component u as a function of time t: (1) the sense of shear is coincident with the sense of the 
vortex rotation; (2) isolated vortex in the absence of shear; (3) the sense of shear is opposite to the the sense of the vortex 

rotation. (a) x=O, y = l ;  (b) x=O, y = 2  
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destroyed. If the signs are the same, the vortex redistributes its vorticity, and its shape is 
determined by the ratio of its vorticity to the shear of the surrounding zonal flow. 

We next focus our attention on the sense of the Reynolds number introduced above. Normally, 
Reynolds number for a shear flow is based on the velocity difference Au = ul - u2 and on the shear 
flow thickness. However, it is hard to define the shear flow thickness distinctly. Bernal and 
Roshko’ determined it as a visual thickness of a shear layer for a gas facility and as a vorticity 
thickness for a water facility used in their experiments. The Reynolds numbers ranged from 9400 
to 13300 for the gas facility, and from 1900 to 6500 for the water facility. Lasheras et al.’ 
estimated local Reynolds numbers based on overall momentum thickness of a shear layer. The 
Reynolds numbers in their water facility experiments varied from 36 near the trailing edge of the 
splitter plate to 270 at 25 cm downstream. Nygaard and Glezer’ also measured momentum 
thickness of a shear layer. Momentum-thickness-based local Reynolds numbers for their water 
facility varied from 216 to 1450. 

Momentum thickness of a shear layer is 
I r + m  

For the shear flow considered herein, t’(x)= tanh(x), u1 = 1, uZ = - 1 and the momentum thick- 
ness 8 = 0.5. The momentum-thickness-based Reynolds number Re = 10. The shear layer thick- 
ness can be defined as a vorticity thickness 

In this case, the vorticity-thickness-based Reynolds number Re, = 40. Although the numerical 
simulation Reynolds numbers Re and Re, are considerably lower than the local Reynolds 
numbers for the experimental works, vorticity distribution for the case when the sense of shear 
coincides with the sense of vortex rotation is similar to side-view visualization photographs of 
plane shear layers for water facility experiments shown in References 5-8. 

CONCLUSIONS 

In this paper, we consider a Chebyshev-collocation-based method for unbounded flows. The 
main features of isolated vortex and shear flow interactions are investigated using this method. 
The numerical simulation results are similar to those obtained by Marcus4 for a vortex in 
a shearing zonal flow. It is worth mentioning that placing of the vortex into higher-strength shear 
flow gives rise to the propagation of the disturbance up and down in the y direction and to the 
flow turbulization. Therefore, the results of this paper are applicable to moderate-strength shear 
flows only. 

To conclude the article, we discuss the possibilities of algorithm generalization. For heat 
convection flow simulations, equations (1) and (2) should be slightly changed and equations for 
temperature and density should be considered. If boundary conditions at infinity are defined for 
all variables, these changes would not cause much difficulty. The numerical procedure described 
above can be used also for a three-dimensional problem solution. In this case, nine Helmholtz 
equations should be solved at the first half of time step. The computer code used for the numerical 
simulations presented in this article is written for three-dimensional case. It is adapted for 
two-dimensional problem solution with the exclusion of some of the program modules. However, 
to obtain adequate results in reasonable time for a three-dimensional problem, one would have to 
use a more powerful computer than the MicroVAX-I1 computer used for the simulations 
presented above. 
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